enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning. [24] In-context learning is an emergent ability [25] of large language models.

  4. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models. For the training cost column, 1 petaFLOP-day = 1 petaFLOP/sec × 1 day = 8.64E19 FLOP. Also, only the largest model's cost is written.

  5. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  6. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [ 1 ] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [ 25 ] and that it had been pre-published while waiting for completion of its review.

  7. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]

  8. Gemini (language model) - Wikipedia

    en.wikipedia.org/wiki/Gemini_(language_model)

    Gemini's launch was preluded by months of intense speculation and anticipation, which MIT Technology Review described as "peak AI hype". [49] [20] In August 2023, Dylan Patel and Daniel Nishball of research firm SemiAnalysis penned a blog post declaring that the release of Gemini would "eat the world" and outclass GPT-4, prompting OpenAI CEO Sam Altman to ridicule the duo on X (formerly Twitter).

  9. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [1] [2] It learns to represent text as a sequence of vectors using self-supervised learning.