Search results
Results from the WOW.Com Content Network
Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
An example of a primitive recursive programming language is one that contains basic arithmetic operators (e.g. + and −, or ADD and SUBTRACT), conditionals and comparison (IF-THEN, EQUALS, LESS-THAN), and bounded loops, such as the basic for loop, where there is a known or calculable upper bound to all loops (FOR i FROM 1 TO n, with neither i ...
1.2.2 Advanced examples. 1.3 Mathematical functions. ... mutual recursion is a form of recursion where two ... The most important basic example of a datatype that can ...
The leaves of the tree are the base cases of the recursion, the subproblems (of size less than k) that do not recurse. The above example would have a child nodes at each non-leaf node. Each node does an amount of work that corresponds to the size of the subproblem n passed to that instance of the recursive call and given by (). The total amount ...
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees.
For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...
A primitive recursive set function is a function from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion: The basic functions are: Projection: P n,m (x 1, ..., x n) = x m for 0 ≤ m ≤ n; Zero: F(x) = 0