enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decrypted by someone who knows the private key. [1] The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem.

  3. PKCS 1 - Wikipedia

    en.wikipedia.org/wiki/PKCS_1

    The PKCS #1 standard defines the mathematical definitions and properties that RSA public and private keys must have. The traditional key pair is based on a modulus, n, that is the product of two distinct large prime numbers, p and q, such that =.

  4. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme. The numbers are listed in increasing order below.

  5. BSAFE - Wikipedia

    en.wikipedia.org/wiki/BSAFE

    Crypto-J is a Java encryption library. In 1997, RSA Data Security licensed Baltimore Technologies' J/CRYPTO library, with plans to integrate it as part of its new JSAFE encryption toolkit [10] and released the first version of JSAFE the same year. [11] JSAFE 1.0 was featured in the January 1998 edition of Byte magazine. [12]

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie–Hellman key exchange and RSA public/private keys. Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b ...

  7. RSA - Wikipedia

    en.wikipedia.org/wiki/RSA

    RSA (cryptosystem) (Rivest–Shamir–Adleman), for public-key encryption RSA Conference, annual gathering; RSA Factoring Challenge, for factoring a set of semi-prime numbers; RSA numbers, with two prime numbers as factors

  8. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Setting up an RSA system involves choosing large prime numbers p and q, computing n = pq and k = φ(n), and finding two numbers e and d such that ed ≡ 1 (mod k). The numbers n and e (the "encryption key") are released to the public, and d (the "decryption key") is kept private.

  9. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    The first RSA numbers generated, RSA-100 to RSA-500 and RSA-617, were labeled according to their number of decimal digits; the other RSA numbers (beginning with RSA-576) were generated later and labelled according to their number of binary digits. The numbers in the table below are listed in increasing order despite this shift from decimal to ...