Search results
Results from the WOW.Com Content Network
In computer science, peek is an operation on certain abstract data types, specifically sequential collections such as stacks and queues, which returns the value of the top ("front") of the collection without removing the element from the collection. It thus returns the same value as operations such as "pop" or "dequeue", but does not modify the ...
Other operations may also be allowed, often including a peek or front operation that returns the value of the next element to be dequeued without dequeuing it. The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed.
One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).
For example, if n = 3, items 1, 2, and 3 on the stack are moved to positions 2, 3, and 1 on the stack, respectively. Many variants of this operation are possible, with the most common being called left rotate and right rotate. Stacks are often visualized growing from the bottom up (like real-world stacks).
Example of a complete binary max-heap Example of a complete binary min heap. A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2]
It implements a max-priority-queue, and has three parameters: a comparison object for sorting such as a function object (defaults to less<T> if unspecified), the underlying container for storing the data structures (defaults to std::vector<T>), and two iterators to the beginning and end of a sequence.
The address and value parameters may contain expressions, as long as the evaluated expressions correspond to valid memory addresses or values, respectively.A valid address in this context is an address within the computer's address space, while a valid value is (typically) an unsigned value between zero and the maximum unsigned number that the minimum addressable unit (memory cell) may hold.
The hash join is an example of a join algorithm and is used in the implementation of a relational database management system.All variants of hash join algorithms involve building hash tables from the tuples of one or both of the joined relations, and subsequently probing those tables so that only tuples with the same hash code need to be compared for equality in equijoins.