enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Gauss's original statement of the Theorema Egregium, translated from Latin into English. The theorem is "remarkable" because the definition of Gaussian curvature makes ample reference to the specific way the surface is embedded in 3-dimensional space, and it is quite surprising that the result does not depend on its embedding.

  3. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the first fundamental form and expressed via the first fundamental form and its partial derivatives of first and second ...

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In the language of tensor calculus, making use of natural metrics and connections on tensor bundles, the Gauss equation can be written as H 2 − |h| 2 = R and the two Codazzi equations can be written as ∇ 1 h 12 = ∇ 2 h 11 and ∇ 1 h 22 = ∇ 2 h 12; the complicated expressions to do with Christoffel symbols and the first fundamental form ...

  5. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    This is called the Gauss equation, as it may be viewed as a generalization of Gauss's Theorema Egregium. For general Riemannian manifolds one has to add the curvature of ambient space; if N is a manifold embedded in a Riemannian manifold ( M , g ) then the curvature tensor R N of N with induced metric can be expressed using the second ...

  6. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    In 1827, Carl Friedrich Gauss discovered that the Gaussian curvature of a surface embedded in 3-dimensional space only depends on local measurements made within the surface (the first fundamental form). [1] This result is known as the Theorema Egregium ("remarkable theorem" in Latin).

  7. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.

  8. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    His theorema egregium gives a method for computing the curvature of a surface without considering the ambient space in which the surface lies. Such a surface would, in modern terminology, be called a manifold; and in modern terms, the theorem proved that the curvature of the surface is an intrinsic property .

  9. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    The concept of a curved space in mathematics differs from conversational usage. For example, if the above process was completed on a cylinder one would find that it is not curved overall as the curvature around the cylinder cancels with the flatness along the cylinder, which is a consequence of Gaussian curvature and Gauss's Theorema Egregium ...