Search results
Results from the WOW.Com Content Network
The role of disjunction in these cases has been analyzed using nonclassical logics such as alternative semantics and inquisitive semantics, which have also been adopted to explain the free choice and simplification inferences. [1] In English, as in many other languages, disjunction is expressed by a coordinating conjunction.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem.; The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).
This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated.
In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. [1] As a normal form, it is useful in automated theorem proving.
Disjunction is often understood exclusively in natural languages. In English, the disjunctive word "or" is often understood exclusively, particularly when used with the particle "either". The English example below would normally be understood in conversation as implying that Mary is not both a singer and a poet. [4] [5] 1. Mary is a singer or a ...
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [ 4 ] [ 5 ] [ 6 ] It is the most widely known example of duality in logic. [ 1 ]
Disjunction: the symbol appeared in Russell in 1908 [5] (compare to Peano's use of the set-theoretic notation of union); the symbol + is also used, in spite of the ambiguity coming from the fact that the + of ordinary elementary algebra is an exclusive or when interpreted logically in a two-element ring; punctually in the history a + together ...