Search results
Results from the WOW.Com Content Network
The first recorded use of the term commutative was in a memoir by François Servois in 1814, [1] [10] which used the word commutatives when describing functions that have what is now called the commutative property. Commutative is the feminine form of the French adjective commutatif, which is derived from the French noun commutation and the ...
For example, convolution of digit sequences is the kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2). Eq.1 requires N arithmetic operations per output value and N 2 operations for N outputs. That can be ...
By the commutative law, the middle two terms cancel: = leaving (+) = The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Commutativity is a special property, attained only by particular functions, and often in special circumstances. For example, | x | + 3 = | x + 3 | only when x ≥ 0. The picture shows another example. The composition of one-to-one (injective) functions is always one-to-one. Similarly, the composition of onto (surjective) functions is always onto.
Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property (for example ...
"The commutative property (or commutative law) is a property generally associated with binary operations and functions." Assuming the statements are correct, I therefore changed the opening sentence of the article to make it clear that the two terms, commutative and symmetric, at least for binary mathematics, are synonymous.
Commutative semigroup, commutative monoid, abelian group, and commutative ring, algebraic structures with the commutative property; Commuting matrices, sets of matrices whose products do not depend on the order of multiplication; Commutator, a measure of the failure of two elements to be commutative in a group or ring