Search results
Results from the WOW.Com Content Network
The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.
Breaking items into parts may allow for improving the overall performance, for example, minimizing the number of total bin. Moreover, the computational problem of finding an optimal schedule may become easier, as some of the optimization variables become continuous. On the other hand, breaking items apart might be costly.
For two clusters, we can assign a binary variable to the point corresponding to the -th row in , indicating whether it belongs to the first (=) or second cluster (=). Consequently, we have 20 binary variables, which form a binary vector x ∈ B 20 {\displaystyle x\in \mathbb {B} ^{20}} that corresponds to a cluster assignment of all points (see ...
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the identical-machines scheduling problem.
An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. [3] [4] Their approach is based on the relationship between plans and stable models. [5]
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
Loop tiling partitions a loop's iteration space into smaller chunks or blocks, so as to help ensure data used in a loop stays in the cache until it is reused. The partitioning of loop iteration space leads to partitioning of a large array into smaller blocks, thus fitting accessed array elements into cache size, enhancing cache reuse and eliminating cache size requirements.
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.