enow.com Web Search

  1. Ads

    related to: 5 plot points examples geometry problems

Search results

  1. Results from the WOW.Com Content Network
  2. Happy ending problem - Wikipedia

    en.wikipedia.org/wiki/Happy_ending_problem

    The happy ending problem: every set of five points in general position contains the vertices of a convex quadrilateral In mathematics , the " happy ending problem " (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Klein [ 1 ] ) is the following statement:

  3. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  4. Mass point geometry - Wikipedia

    en.wikipedia.org/wiki/Mass_point_geometry

    All problems that can be solved using mass point geometry can also be solved using either similar triangles, vectors, or area ratios, [2] but many students prefer to use mass points. Though modern mass point geometry was developed in the 1960s by New York high school students, [3] the concept has been found to have been used as early as 1827 by ...

  5. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

  6. Enumerative geometry - Wikipedia

    en.wikipedia.org/wiki/Enumerative_geometry

    As an example, count the conic sections tangent to five given lines in the projective plane. [4] The conics constitute a projective space of dimension 5, taking their six coefficients as homogeneous coordinates, and five points determine a conic, if the points are in general linear position, as passing through a given point imposes a linear ...

  7. Visibility graph - Wikipedia

    en.wikipedia.org/wiki/Visibility_graph

    Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal obstacles in the plane: the shortest path between two obstacles follows straight line segments except at the vertices of the obstacles, where it may turn, so the Euclidean shortest path is the shortest path in a visibility graph that has as its nodes the start and destination points and the vertices of the ...

  8. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    The no-three-in-line problem also has applications to another problem in discrete geometry, the Heilbronn triangle problem. In this problem, one must place points, anywhere in a unit square, not restricted to a grid. The goal of the placement is to avoid small-area triangles, and more specifically to maximize the area of the smallest triangle ...

  9. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors". It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation.

  1. Ads

    related to: 5 plot points examples geometry problems