Search results
Results from the WOW.Com Content Network
Switchgrass somatic embryos. Somatic embryogenesis is an artificial process in which a plant or embryo is derived from a single somatic cell. [1] Somatic embryos are formed from plant cells that are not normally involved in the development of embryos, i.e. ordinary plant tissue. No endosperm or seed coat is formed around a somatic embryo.
Human embryonic development or human embryogenesis is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development.
Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination . [ 1 ]
In embryology, Carnegie stages are a standardized system of 23 stages used to provide a unified developmental chronology of the vertebrate embryo.. The stages are delineated through the development of structures, not by size or the number of days of development, and so the chronology can vary between species, and to a certain extent between embryos.
In cellular biology, a somatic cell (from Ancient Greek σῶμα (sôma) 'body'), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. [1] Somatic cells compose the body of an organism and divide through mitosis.
Germ-Soma Differentiation is the process by which organisms develop distinct germline and somatic cells. The development of cell differentiation has been one of the critical aspects of the evolution of multicellularity and sexual reproduction in organisms.
In human somatic cells, the G 1 stage of the cell cycle lasts about 10 hours. [2] However, in Xenopus embryos, sea urchin embryos, and Drosophila embryos, the G 1 phase is barely existent and is defined as the gap, if one exists, between the end of mitosis and the S phase.
During embryogenesis, for a number of cell cleavages (the specific number depends on the type of organism) all the cells of an embryo will be morphologically and developmentally equivalent. This means, each cell has the same development potential and all cells are essentially interchangeable, thus establishing an equivalence group. The ...