enow.com Web Search

  1. Ads

    related to: mutually externally tangent circles geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  3. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  4. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    The algebraic solutions do not distinguish between internal and external tangencies among the circles and the given triangle; if the problem is generalized to allow tangencies of either kind, then a given triangle will have 32 different solutions and conversely a triple of mutually tangent circles will be a solution for eight different ...

  5. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    They are all named for Frederick Soddy, who rediscovered Descartes' theorem on the radii of mutually tangent quadruples of circles. Any triangle has three externally tangent circles centered at its vertices. Two more circles, its Soddy circles, are tangent to the three circles centered at the vertices; their centers are called Soddy centers.

  6. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    For every set of four mutually tangent circles, there is a second set of four mutually tangent circles that are tangent at the same six points. [2] [49] Descartes' theorem was rediscovered independently in 1826 by Jakob Steiner, [50] in 1842 by Philip Beecroft, [2] [49] and again in 1936 by Frederick Soddy. [51]

  7. Coxeter's loxodromic sequence of tangent circles - Wikipedia

    en.wikipedia.org/wiki/Coxeter's_loxodromic...

    Blue circle 0 is tangent to circles 1, 2 and 3, as well as to preceding circles −1, −2 and −3. In geometry, Coxeter's loxodromic sequence of tangent circles is an infinite sequence of circles arranged so that any four consecutive circles in the sequence are pairwise mutually tangent. This means that each circle in the sequence is tangent ...

  8. Ford circle - Wikipedia

    en.wikipedia.org/wiki/Ford_circle

    In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...

  9. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    For any two circles in a plane, an external tangent is a line that is tangent to both circles but does not pass between them. There are two such external tangent lines for any two circles. Each such pair has a unique intersection point in the extended Euclidean plane. Monge's theorem states that the three such points given by the three pairs of ...

  1. Ads

    related to: mutually externally tangent circles geometry