Search results
Results from the WOW.Com Content Network
In the life sciences, mass flow, also known as mass transfer and bulk flow, is the movement of fluids down a pressure or temperature gradient. [1] As such, mass flow is a subject of study in both fluid dynamics and biology. Examples of mass flow include blood circulation and transport of water in vascular plant tissues. Mass flow is not to be ...
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...
There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.
In cell biology, bulk flow is the process by which proteins with a sorting signal [definition needed] travel to and from different cellular compartments. In other words, bulk transport is a type of transport which involves the transport of large amount of substance like lipid droplets and solid food particles across plasma membrane by utilising energy.
"Bulk flow" is the movement/flow of an entire body due to a pressure gradient (for example, water coming out of a tap). "Diffusion" is the gradual movement/dispersion of concentration within a body with no net movement of matter. An example of a process where both bulk motion and diffusion occur is human breathing. [2]
One example is fluid being compressed by a piston in a cylinder. Another example of a closed system is a bomb calorimeter, a type of constant-volume calorimeter used in measuring the heat of combustion of a particular reaction. Electrical energy travels across the boundary to produce a spark between the electrodes and initiates combustion.
Passive diffusion across a cell membrane.. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. [1] [2] Instead of using cellular energy, like active transport, [3] passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.
Dispersive mass transfer, in fluid dynamics, is the spreading of mass from highly concentrated areas to less concentrated areas. It is one form of mass transfer. [1] Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: =,