Search results
Results from the WOW.Com Content Network
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power , often expressed in decibels .
Signal-to-noise ratio (SNR), however, is the ratio between the noise floor and an arbitrary reference level or alignment level. In "professional" recording equipment, this reference level is usually +4 dBu (IEC 60268-17), though sometimes 0 dBu (UK and Europe – EBU standard Alignment level).
A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity.
This is an example of a case where sensivity is defined as the minimum input signal required to produce a specified output signal having a specified signal-to-noise ratio. [2] This definition has the advantage that the sensitivity is closely related to the detection limit of a sensor if the minimum detectable SNR o is specified .
Traditionally, SNR is defined to be the ratio of the average signal value to the standard deviation of the signal : [2] [3] = when the signal is an optical intensity, or as the square of this value if the signal and noise are viewed as amplitudes (field quantities).
Signal-to-noise ratio. Signal-to-noise ratio (imaging) Supernova remnant; Society for Nautical Research; Senior, a male generational title suffix; Sanderstead railway station, London, National Rail station code; Stabbursnes Nature Reserve, a protected area located in Porsanger
where is the average power of the signal, quantization error, random noise and distortion components. SINADR is usually expressed in dB. SINADR is a standard metric for analog-to-digital converter and digital-to-analog converter. SINADR (in dB) is related to effective number of bits (ENOB) by the following equation:
S is the total signal power over the bandwidth and N is the total noise power over the bandwidth. S/N is the signal-to-noise ratio of the communication signal to the Gaussian noise interference expressed as a straight power ratio (not as decibels). This 1.53 dB difference is called the shaping gap.