enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  3. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  4. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]

  5. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    A two-sided identity (or just identity) is an element that is both a left and right identity. Semigroups with a two-sided identity are called monoids. A semigroup may have at most one two-sided identity. If a semigroup has a two-sided identity, then the two-sided identity is the only one-sided identity in the semigroup.

  6. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories Cat (equipped with the monoidal structure induced by the cartesian product).

  7. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) (M, μ, η) in a monoidal category (C, ⊗, I) is an object M together with two morphisms. μ: M ⊗ M → M called multiplication, η: I → M called unit, such that the pentagon diagram. and the unitor diagram commute.

  8. Category:Graph products - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_products

    Pages in category "Graph products" The following 12 pages are in this category, out of 12 total. This list may not reflect recent changes. ...

  9. Cartesian product of graphs - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product_of_graphs

    If a connected graph is a Cartesian product, it can be factorized uniquely as a product of prime factors, graphs that cannot themselves be decomposed as products of graphs. [2] However, Imrich & Klavžar (2000) describe a disconnected graph that can be expressed in two different ways as a Cartesian product of prime graphs: