Search results
Results from the WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit. For celestial objects in general, the orbital period is determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun. Periods in astronomy are expressed in units of time, usually hours, days, or years.
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
T = rotational period of the body = Radius of orbit. By this formula one can find the stationary orbit of an object in relation to a given body. Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius. [3]
Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars". [ 1 ] Viewed from the same location , a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal ...
The sun, Earth and Jupiter will nearly align perfectly in the solar system on Monday, Sept. 26, during an event that happens once every 13 months called the Jupiter opposition.
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!