Search results
Results from the WOW.Com Content Network
Depth only increases when the root is split, maintaining balance. Similarly, a B-tree is kept balanced after deletion by merging or redistributing keys among siblings to maintain the -key minimum for non-root nodes. A merger reduces the number of keys in the parent potentially forcing it to merge or redistribute keys with its siblings, and so on.
The static optimality problem is the optimization problem of finding the binary search tree that minimizes the expected search time, given the + probabilities. As the number of possible trees on a set of n elements is ( 2 n n ) 1 n + 1 {\displaystyle {2n \choose n}{\frac {1}{n+1}}} , [ 2 ] which is exponential in n , brute-force search is not ...
Removing a point from a balanced k-d tree takes O(log n) time. Querying an axis-parallel range in a balanced k-d tree takes O(n 1−1/k +m) time, where m is the number of the reported points, and k the dimension of the k-d tree. Finding 1 nearest neighbour in a balanced k-d tree with randomly distributed points takes O(log n) time on average.
A tournament tree can be represented as a balanced binary tree by adding sentinels to the input lists (i.e. adding a member to the end of each list with a value of infinity) and by adding null lists (comprising only a sentinel) until the number of lists is a power of two. The balanced tree can be stored in a single array.
Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancing binary search trees provide efficient implementations for mutable ordered lists , and can be used for other abstract data structures such as associative arrays , priority queues and sets .
A node is α-weight-balanced if weight[n.left] ≥ α·weight[n] and weight[n.right] ≥ α·weight[n]. [7] Here, α is a numerical parameter to be determined when implementing weight balanced trees. Larger values of α produce "more balanced" trees, but not all values of α are appropriate; Nievergelt and Reingold proved that
In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.
A binary tree is a rooted tree that is also an ordered tree (a.k.a. plane tree) in which every node has at most two children. A rooted tree naturally imparts a notion of levels (distance from the root); thus, for every node, a notion of children may be defined as the nodes connected to it a level below.