enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Without loss of generality - Wikipedia

    en.wikipedia.org/wiki/Without_loss_of_generality

    In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. [2] For example, if some property P(x,y) of real numbers is known to be symmetric in x and y, namely that P(x,y) is equivalent to P(y,x), then in proving that P(x,y) holds for every x and y, one may assume "without loss of generality" that x ...

  3. Reflective subcategory - Wikipedia

    en.wikipedia.org/wiki/Reflective_subcategory

    The morphism is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about A B {\displaystyle A_{B}} only as being the A -reflection of B ). This is equivalent to saying that the embedding functor E : A ↪ B {\displaystyle E\colon \mathbf {A} \hookrightarrow \mathbf {B} } is a right adjoint.

  4. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    The constraint is sharp (sometimes optimal) if it cannot be made more restrictive without failing in some cases. For example, for arbitrary non-negative real numbers x, the exponential function e x, where e = 2.7182818..., gives an upper bound on the values of the quadratic function x 2. This is not sharp; the gap between the functions is ...

  5. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  6. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  7. Schwarz reflection principle - Wikipedia

    en.wikipedia.org/wiki/Schwarz_reflection_principle

    In mathematics, the Schwarz reflection principle is a way to extend the domain of definition of a complex analytic function, i.e., it is a form of analytic continuation.It states that if an analytic function is defined on the upper half-plane, and has well-defined (non-singular) real values on the real axis, then it can be extended to the conjugate function on the lower half-plane.

  8. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...

  9. Proof without words - Wikipedia

    en.wikipedia.org/wiki/Proof_without_words

    Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.