Search results
Results from the WOW.Com Content Network
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.
Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory. The name "reflection principle" comes from the fact that properties of the universe of all sets are "reflected" down to a smaller set.
In mathematics, the Schwarz reflection principle is a way to extend the domain of definition of a complex analytic function, i.e., it is a form of analytic continuation.It states that if an analytic function is defined on the upper half-plane, and has well-defined (non-singular) real values on the real axis, then it can be extended to the conjugate function on the lower half-plane.
The morphism is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about A B {\displaystyle A_{B}} only as being the A -reflection of B ). This is equivalent to saying that the embedding functor E : A ↪ B {\displaystyle E\colon \mathbf {A} \hookrightarrow \mathbf {B} } is a right adjoint.
When K is the field of real numbers, a pseudoreflection has matrix form diag(1, ... , 1, -1). A pseudoreflection with such matrix form is called a real reflection.If the space on which this transformation acts admits a symmetric bilinear form so that orthogonality of vectors can be defined, then the transformation is a true reflection.
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...
An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive. An example of a coreflexive relation is the relation on integers in which each odd number is related to itself and there are no other relations. The ...
In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...