Search results
Results from the WOW.Com Content Network
A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e. surjective). Not translatable (without circumlocutions) to some languages other than English.
Another approach is taken by the von Neumann–Bernays–Gödel axioms (NBG); classes are the basic objects in this theory, and a set is then defined to be a class that is an element of some other class. However, the class existence axioms of NBG are restricted so that they only quantify over sets, rather than over all classes.
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Also "Is the answer to this question 'no'?", and "I'm lying." Card paradox: "The next statement is true. The previous statement is false." A variant of the liar paradox in which neither of the sentences employs (direct) self-reference, instead this is a case of circular reference. No-no paradox: Two sentences that each say the other is not true.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
This way, you can gauge your partner’s reactions virtually, instead of face-to-face. (It’s so much easier to have someone say something isn’t their thing over text than midway through sex ...
See § Brackets for examples of use. Most symbols have two printed versions. They can be displayed as Unicode characters, or in LaTeX format. With the Unicode version, using search engines and copy-pasting are easier. On the other hand, the LaTeX rendering is often much better (more aesthetic), and is generally considered a standard in mathematics.