Search results
Results from the WOW.Com Content Network
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Let us assume that the resonant neutrons move in an infinite system consisting of a moderator and 238 U. When colliding with the moderator nuclei, the neutrons are scattered, and with the 238 U nuclei, they are absorbed. The former collisions favor the retention and removal of resonant neutrons from the danger zone, while the latter lead to ...
The "Six-factor formula" is the neutron life-cycle balance equation, which includes six separate factors, the product of which is equal to the ratio of the number of neutrons in any generation to that of the previous one; this parameter is called the effective multiplication factor k, also denoted by K eff, where k = Є L f ρ L th f η, where ...
The multiplication factor is sometimes calculated with a simplified four-factor formula, which is the same as described above with and both equal to 1, and is used when an assumption is made that the reactor is "infinite" in that neutrons are very unlikely to leak out of the system.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]
The Segrè chart may be considered a map of the nuclear valley. The region of proton and neutron combinations outside of the valley of stability is referred to as the sea of instability. [4] [5] Scientists have long searched for long-lived heavy isotopes outside of the valley of stability, [6] [7] [8] hypothesized by Glenn T. Seaborg in the ...
Geometric buckling is a measure of neutron leakage and material buckling is a measure of the difference between neutron production and neutron absorption. [1] When nuclear fission occurs inside of a nuclear reactor, neutrons are produced. [1] These neutrons then, to state it simply, either react with the fuel in the reactor or escape from the ...