enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...

  3. Compensation point - Wikipedia

    en.wikipedia.org/wiki/Compensation_point

    The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...

  4. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]

  5. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    Cyanobacteria such as these carry out photosynthesis. Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.

  6. CO2 fertilization effect - Wikipedia

    en.wikipedia.org/wiki/CO2_fertilization_effect

    Through photosynthesis, plants use CO 2 from the atmosphere, water from the ground, and energy from the sun to create sugars used for growth and fuel. [22] While using these sugars as fuel releases carbon back into the atmosphere (photorespiration), growth stores carbon in the physical structures of the plant (i.e. leaves, wood, or non-woody stems). [23]

  7. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.

  8. Redfield ratio - Wikipedia

    en.wikipedia.org/wiki/Redfield_ratio

    It may even be the case that the Redfield Ratio is applicable to terrestrial plants, soils, and soil microbial biomass, which would inform about limiting resources in terrestrial ecosystems. [12] In a study from 2007, soil and microbial biomass were found to have a consistent C:N:P ratios of 186:13:1 and 60:7:1, respectively on average at a ...

  9. Photosynthetic capacity - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_capacity

    For example, in high carbon dioxide concentrations or in low light, the plant is not able to regenerate ribulose-1,5-bisphosphate fast enough (also known RUBP, the acceptor molecule in photosynthetic carbon reduction). So in this case, photosynthetic capacity is limited by electron transport of the light reaction, which generates the NADPH and ...