Search results
Results from the WOW.Com Content Network
A graph of the common logarithm of numbers from 0.1 to 100. In mathematics, the common logarithm (aka "standard logarithm") is the logarithm with base 10. [1] It is also known as the decadic logarithm, the decimal logarithm and the Briggsian logarithm.
The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...
For example, a 5.0 earthquake releases 32 times (10 1.5) and a 6.0 releases 1000 times (10 3) the energy of a 4.0. [61] Apparent magnitude measures the brightness of stars logarithmically. [62] In chemistry the negative of the decimal logarithm, the decimal cologarithm, is indicated by the letter p. [63]
On the region consisting of complex numbers that are not negative real numbers or 0, the function is the analytic continuation of the natural logarithm. The values on the negative real line can be obtained as limits of values at nearby complex numbers with positive imaginary parts.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
A similar LNS named "signed logarithmic number system" (SLNS) was described in 1975 by Earl Swartzlander and Aristides Alexopoulos; rather than use two's complement notation for the logarithms, they offset them (scale the numbers being represented) to avoid negative logs. [3]
Three-dimensional plot showing the values of the logarithmic mean. In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.
The discrete logarithm is just the inverse operation. For example, consider the equation 3 k ≡ 13 (mod 17). From the example above, one solution is k = 4, but it is not the only solution. Since 3 16 ≡ 1 (mod 17)—as follows from Fermat's little theorem—it also follows that if n is an integer then 3 4+16n ≡ 3 4 × (3 16) n ≡ 13 × 1 n ...