Search results
Results from the WOW.Com Content Network
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.
Data understanding; Data preparation; Modeling; Evaluation; Deployment; or a simplified process such as (1) Pre-processing, (2) Data Mining, and (3) Results Validation. Polls conducted in 2002, 2004, 2007 and 2014 show that the CRISP-DM methodology is the leading methodology used by data miners. [15] [16] [17] [18]
An example of data mining that is closely related to data wrangling is ignoring data from a set that is not connected to the goal: say there is a data set related to the state of Texas and the goal is to get statistics on the residents of Houston, the data in the set related to the residents of Dallas is not useful to the overall set and can be ...
Most preprocessors are specific to a particular data processing task (e.g., compiling the C language). A preprocessor may be promoted as being general purpose , meaning that it is not aimed at a specific usage or programming language, and is intended to be used for a wide variety of text processing tasks.
KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]