Search results
Results from the WOW.Com Content Network
Friedel–Crafts alkylations can be reversible. Although this is usually undesirable it can be exploited; for instance by facilitating transalkylation reactions. [10] 1,3-Diisopropylbenzene is produced via transalkylation, a special form of Friedel–Crafts alkylation. It also allows alkyl chains to be added reversibly as protecting groups.
The Friedel-Crafts alkylation process involves chlorination of n-paraffins to monochloroparaffins followed by alkylation of benzene using aluminum chloride (AlCl 3) catalyst. This method is one of the oldest commercial routes to LABs. Each process generates LAB products with distinct features.
Friedel-Crafts alkylation: alkylbenzenes can be synthesized from olefins or alkyl halides with aromatic compounds in the presence of a catalyst such as AlCl 3, HF, or H 2 SO 4. [ 4 ] Gattermann-Koch reaction : named after German chemists Ludwig Gattermann and Julius Arnold Koch , the Gattermann-Koch reaction is a catalyzed formylation of ...
Friedel-Crafts alkylation of benzene is often catalyzed by aluminium trichloride. Electrophilic alkylation uses Lewis acids and Brønsted acids, sometimes both. Classically, Lewis acids, e.g., aluminium trichloride, are employed when the alkyl halide are used. Brønsted acids are used when alkylating with olefins.
Cumene is formed in the gas-phase Friedel–Crafts alkylation of benzene by propene. Benzene and propene are compressed together to a pressure of 30 standard atmospheres at 250 °C in presence of a catalytic Lewis acid. Phosphoric acid is often favored over aluminium halides.
Clemmensen reduction conditions are particularly effective at reducing aryl [4]-alkyl ketones, [5] [6] such as those formed in a Friedel-Crafts acylation. The two-step sequence of Friedel-Crafts acylation followed by Clemmensen reduction constitutes a classical strategy for the primary alkylation of arenes.
Fráter–Seebach alkylation; Free radical halogenation; Freund reaction; Friedel–Crafts acylation; Friedel–Crafts alkylation; Friedländer synthesis; Fries rearrangement; Fritsch–Buttenberg–Wiechell rearrangement; Fujimoto–Belleau reaction; Fujiwara–Moritani reaction; Fukuyama coupling; Fukuyama indole synthesis; Fukuyama reduction
The Zincke–Suhl reaction is a special case of a Friedel-Crafts alkylation and was first described by Theodor Zincke and Suhl in 1906. [1] [2] [3] Unlike the traditional Friedel-Crafts reaction, the reduction of the phenyl ring leads to a higher energy final product that can be used as starting material in the dienol–benzene rearrangement, among other reactions.