Search results
Results from the WOW.Com Content Network
A digital current loop uses the absence of current for high (space or break), and the presence of current in the loop for low (mark). [1] This is done to ensure that on normal conditions there is always current flowing and in the event of a line being cut the flow stops indefinitely, immediately raising the alarm of the event usually as the heavy noise of the teleprinter not being synchronized ...
A major application of current loops is the industry de facto standard 4–20 mA current loop for process control applications, where they are extensively used to carry signals from process instrumentation to proportional–integral–derivative (PID) controllers, supervisory control and data acquisition (SCADA) systems, and programmable logic ...
Dia has special objects to help draw entity-relationship models, Unified Modeling Language (UML) diagrams, flowcharts, network diagrams, and simple electrical circuits. It is also possible to add support for new shapes by writing simple XML files, using a subset of Scalable Vector Graphics (SVG) to draw the shape.
Causal loop diagram builder. Can be used for stock and flow analysis [10] Online Free Kialo [11] Full release Responses from group debates are used to build a causal network. Features: discussion forum in tree form; Online Free Netway [12] Full release Tool for building logic models and networks Online Free Nineteen [13] Full release Features:
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
To determine if a causal loop is reinforcing or balancing, one can start with an assumption, e.g. "Variable 1 increases" and follow the loop around. The loop is: reinforcing if, after going around the loop, one ends up with the same result as the initial assumption. balancing if the result contradicts the initial assumption.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency.