enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.

  4. Meselson–Stahl experiment - Wikipedia

    en.wikipedia.org/wiki/Meselson–Stahl_experiment

    After that, E. coli cells with only 15 N in their DNA were transferred to a 14 N medium and were allowed to divide; the progress of cell division was monitored by microscopic cell counts and by colony assay. DNA was extracted periodically and was compared to pure 14 N DNA and 15 N DNA. After one replication, the DNA was found to have ...

  5. Replication timing - Wikipedia

    en.wikipedia.org/wiki/Replication_timing

    The temporal order of replication of all the segments in the genome, called its replication-timing program, can now be easily measured in two different ways. [1] One way simply measures the amount of the different DNA sequences along the length of the chromosome per cell.

  6. Our DNA is 99.9 percent the same as the person sitting next ...

    www.aol.com/article/2016/05/06/our-dna-is-99-9...

    A 2005 study found that chimpanzees -- our closest living evolutionary relatives -- are 96 percent genetically similar to humans. BI GRAPHICS_percentage of DNA humans share with other things ...

  7. Cell cycle - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle

    The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.

  8. Prokaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Prokaryotic_DNA_replication

    The rate of DNA replication in a living cell was first measured as the rate of phage T4 DNA elongation in phage-infected E. coli. [18] During the period of exponential DNA increase at 37 °C, the rate was 749 nucleotides per second. The mutation rate per base pair per replication during phage T4 DNA synthesis is 1.7 per 10 8. [19]

  9. Licensing factor - Wikipedia

    en.wikipedia.org/wiki/Licensing_factor

    A licensing factor is a protein or complex of proteins that allows an origin of replication to begin DNA replication at that site. Licensing factors primarily occur in eukaryotic cells, since bacteria use simpler systems to initiate replication. However, many archaea use homologues of eukaryotic licensing factors to initiate replication. [1]