Search results
Results from the WOW.Com Content Network
The Hamilton–Jacobi equation is a single, first-order partial differential equation for the function of the generalized coordinates,, …, and the time . The generalized momenta do not appear, except as derivatives of S {\displaystyle S} , the classical action .
Specifically, the more general form of the Hamilton's equation reads = {,} +, where f is some function of p and q, and H is the Hamiltonian. To find out the rules for evaluating a Poisson bracket without resorting to differential equations, see Lie algebra ; a Poisson bracket is the name for the Lie bracket in a Poisson algebra .
The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.
One example is the planetary movement of three bodies: while there is no closed-form solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H ( q , p , t ) {\displaystyle H({\boldsymbol {q}},{\boldsymbol ...
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
According to Noether's theorem, the conservation of energy is a consequence of ... Hamilton–Jacobi equation; ... For example, conversion of energy from one type of ...