enow.com Web Search

  1. Ad

    related to: properties of altitudes in triangles examples geometry problems and solutions

Search results

  1. Results from the WOW.Com Content Network
  2. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the base and extended base of the altitude.

  3. Fagnano's problem - Wikipedia

    en.wikipedia.org/wiki/Fagnano's_problem

    In geometry, Fagnano's problem is an optimization problem that was first stated by Giovanni Fagnano in 1775: For a given acute triangle determine the inscribed triangle of minimal perimeter . The solution is the orthic triangle , with vertices at the base points of the altitudes of the given triangle.

  4. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The Schiffler point of a triangle is the point of concurrence of the Euler lines of four triangles: the triangle in question, and the three triangles that each share two vertices with it and have its incenter as the other vertex. The Napoleon points and generalizations of them are points of concurrency. For example, the first Napoleon point is ...

  6. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Any triangle, in which the altitude equals the geometric mean of the two line segments created by it, is a right triangle. The theorem can also be thought of as a special case of the intersecting chords theorem for a circle, since the converse of Thales' theorem ensures that the hypotenuse of the right angled triangle is the diameter of its ...

  7. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The nine-point circle of a reference triangle is the circumcircle of both the reference triangle's medial triangle (with vertices at the midpoints of the sides of the reference triangle) and its orthic triangle (with vertices at the feet of the reference triangle's altitudes). [6]: p.153

  8. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  9. Orthocenter - Wikipedia

    en.wikipedia.org/wiki/Orthocenter

    In any acute triangle, the inscribed triangle with the smallest perimeter is the orthic triangle. [25] This is the solution to Fagnano's problem, posed in 1775. [26] The sides of the orthic triangle are parallel to the tangents to the circumcircle at the original triangle's vertices. [27]

  1. Ad

    related to: properties of altitudes in triangles examples geometry problems and solutions