enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brouwer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Brouwer's_conjecture

    Brouwer has confirmed by computation that the conjecture is valid for all graphs with at most 10 vertices. [1] It is also known that the conjecture is valid for any number of vertices if t = 1, 2, n − 1, and n. For certain types of graphs, Brouwer's conjecture is known to be valid for all t and for any number of vertices

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]

  4. Brouwer–Haemers graph - Wikipedia

    en.wikipedia.org/wiki/Brouwer–Haemers_graph

    The Brouwer–Haemers graph is the first in an infinite family of Ramanujan graphs defined as generalized Paley graphs over fields of characteristic three. [2] With the 3 × 3 {\displaystyle 3\times 3} Rook's graph and the Games graph , it is one of only three possible strongly regular graphs whose parameters have the form ( ( n 2 + 3 n − 1 ...

  5. File:Brouwer Haemers graph.svg - Wikipedia

    en.wikipedia.org/wiki/File:Brouwer_Haemers_graph.svg

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  6. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fully equivalent definition of a strongly regular graph based on spectral graph theory: a strongly regular graph is a finite regular graph that has exactly three eigenvalues, only one of which is equal to the degree k, of multiplicity 1.

  7. Degree of a continuous mapping - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_continuous_mapping

    The degree of a map between general manifolds was first defined by Brouwer, [1] who showed that the degree is homotopy invariant and used it to prove the Brouwer fixed point theorem. Less general forms of the concept existed before Brouwer, such as the winding number and the Kronecker characteristic (or Kronecker integral). [2]

  8. Play Hearts Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/hearts

    Enjoy a classic game of Hearts and watch out for the Queen of Spades!

  9. Multifractal system - Wikipedia

    en.wikipedia.org/wiki/Multifractal_system

    Another useful multifractal spectrum is the graph of () versus (see calculations). These graphs generally rise to a maximum that approximates the fractal dimension at Q=0, and then fall. Like D Q versus Q spectra, they also show typical patterns useful for comparing non-, mono-, and multi-fractal patterns.

  1. Related searches spectra of graphs by brouwer and clark summary printable

    spectra of graphs by brouwer and clark summary printable worksheets