Search results
Results from the WOW.Com Content Network
In thermodynamics, the bubble point is the temperature (at a given pressure) where the first bubble of vapor is formed when heating a liquid consisting of two or more components. [ 1 ] [ 2 ] Given that vapor will probably have a different composition than the liquid, the bubble point (along with the dew point ) at different compositions are ...
It is widely used to measure minimum, maximum (or first bubble point) and mean flow pore sizes, and pore size distribution of the through pores in membranes [1] nonwovens, paper, filtration and ultrafiltration media, hollow fibers, [2] ceramics, etc. In capillary flow porometry an inert gas is used to displace a liquid, which is in the pores ...
At the point of the maximum bubble pressure, the bubble has a complete hemispherical shape whose radius is identical to the radius of the capillary denoted by Rcap. The surface tension can be determined using the Young–Laplace equation in the reduced form for spherical bubble shape within the liquid.
The bubble point and dew point data would become curved surfaces inside a triangular prism, which connect the three boiling points on the vertical temperature "axes". Each face of this triangular prism would represent a two-dimensional boiling-point diagram for the corresponding binary mixture.
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.
Rigorous calculation methods: Bubble point method, sum rates method, numerical methods (Newton–Raphson technique), inside out method, relaxation method, other methods; Batch distillation: Simple distillation, constant reflux, varying reflux, time and boilup requirements
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Lee [4] developed a modified form of the Antoine equation that allows for calculating vapor pressure across the entire temperature range using the acentric factor (𝜔) of a substance. The fundamental structure of the equation is based on the van der Waals equation and builds upon the findings of Wall [ 5 ] and Gutmann et al. [ 6 ] , who ...