Search results
Results from the WOW.Com Content Network
The most common example of stacking faults is found in close-packed crystal structures. Face-centered cubic (fcc) structures differ from hexagonal close packed (hcp) structures only in stacking order: both structures have close-packed atomic planes with sixfold symmetry — the atoms form equilateral triangles. When stacking one of these layers ...
The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.
Stacking faults occur in a number of crystal structures, but the common example is in close-packed structures. They are formed by a local deviation of the stacking sequence of layers in a crystal. An example would be the ABABCABAB stacking sequence. A twin boundary is a defect that introduces a plane of mirror symmetry in the ordering of a crystal.
The principles involved can be understood by considering the most efficient way of packing together equal-sized spheres and stacking close-packed atomic planes in three dimensions. For example, if plane A lies beneath plane B, there are two possible ways of placing an additional atom on top of layer B.
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
The stacking-fault energy (SFE) is a materials property on a very small scale. It is noted as γ SFE in units of energy per area. A stacking fault is an interruption of the normal stacking sequence of atomic planes in a close-packed crystal structure. These interruptions carry a certain stacking-fault energy.
In closest packing, every atom has 12 equidistant nearest neighbours, and therefore a coordination number of 12. If the close packed structures are considered as being built of layers of spheres, then the difference between hexagonal close packing and face-centred cubic is how each layer is positioned relative to others.
A network model of a primitive cubic system The primitive and cubic close-packed (also known as face-centered cubic) unit cells. In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.