Search results
Results from the WOW.Com Content Network
The theoretical braking distance can be found by determining the work required to dissipate the vehicle's kinetic energy. [10] The kinetic energy E is given by the formula: =, where m is the vehicle's mass and v is the speed at the start of braking. The work W done by braking is given by:
British Railway Class 90 infobox showing brake force Brake force to weight ratio of the Class 67 is higher than some other locomotives. In the case of railways, it is important that staff are aware of the brake force of a train so sufficient brake power will be available to bring the train to a halt within the required distance from a given speed.
Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.
The brake balance or brake bias of a vehicle is the distribution of brake force at the front and rear tires, and may be given as the percentage distributed to the front brakes (e.g. 52%) [1] or as the ratio of front and rear percentages (e.g. 52/48). [2] The braking balance affects the driving characteristics in terms of how fast the vehicle ...
The static friction force adapts to the residual spring force, establishing equilibrium with zero net force and zero velocity. Consider the example of a braking and decelerating car. The brake pads generate kinetic frictional forces and constant braking torques on the disks (or drums) of the wheels. Rotational velocity decreases linearly to ...
The predecessor of modern electronic traction control systems can be found in high-torque, high-power rear-wheel-drive cars as a limited slip differential.A limited-slip differential is a purely mechanical system that transfers a relatively small amount of power to the non-slipping wheel, while still allowing some wheel spin to occur.
The carbon brakes in combination with tyre technology and the car's aerodynamics produce truly remarkable braking forces. The deceleration force under braking is usually 4 g (39 m/s 2 ), and can be as high as 5–6 g [ 35 ] when braking from extreme speeds, for instance at the Gilles Villeneuve circuit or at Indianapolis.
The desired speed is maintained by using engine braking to counteract gravitational acceleration. Potential transmission wear caused by engine braking can be mitigated by certain techniques. Slipping the clutch to complete a downshift wears the clutch plate as it slows the vehicle, doing the job of the brake pads or shoes.