Search results
Results from the WOW.Com Content Network
lower_bound: lower_bound: lower_bound: lower_bound: Returns an iterator to the first element with a key not less than the given value. upper_bound: upper_bound: upper_bound: upper_bound: Returns an iterator to the first element with a key greater than a certain value. Observers key_comp: key_comp: key_comp: key_comp: Returns the key comparison ...
In Computers and Intractability [8]: 226 Garey and Johnson list the bin packing problem under the reference [SR1]. They define its decision variant as follows. Instance: Finite set of items, a size () + for each , a positive integer bin capacity , and a positive integer .
Moreover, for each number of cities there is an assignment of distances between the cities for which the nearest neighbour heuristic produces the unique worst possible tour. (If the algorithm is applied on every vertex as the starting vertex, the best path found will be better than at least N/2-1 other tours, where N is the number of vertices.) [1]
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.
The lower bound on worst-case running time of output-sensitive convex hull algorithms was established to be Ω(n log h) in the planar case. [1] There are several algorithms which attain this optimal time complexity. The earliest one was introduced by Kirkpatrick and Seidel in 1986 (who called it "the ultimate convex hull algorithm").
The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.
Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]
First-fit (FF) is an online algorithm for bin packing.Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity.