enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluorophore - Wikipedia

    en.wikipedia.org/wiki/Fluorophore

    The fluorophore absorbs light energy of a specific wavelength and re-emits light at a longer wavelength. The absorbed wavelengths, energy transfer efficiency, and time before emission depend on both the fluorophore structure and its chemical environment, since the molecule in its excited state interacts with surrounding molecules.

  3. Fluorescence - Wikipedia

    en.wikipedia.org/wiki/Fluorescence

    Fluorescence in the life sciences is used generally as a non-destructive way of tracking or analysis of biological molecules by means of the fluorescent emission at a specific frequency where there is no background from the excitation light, as relatively few cellular components are naturally fluorescent (called intrinsic or autofluorescence).

  4. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...

  5. After being discontinued in 2021, Miller High Life Light is ...

    www.aol.com/being-discontinued-2021-miller-high...

    High Life Light is 34 calories less than the original "Champagne of Beers" and is 4.1% alcohol by volume; High Life is 4.6%. A Journal Sentinel file photo of Miller High Life Light.

  6. Fluorescence imaging - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_imaging

    Fluorescence imaging photographs fluorescent dyes and fluorescent proteins to mark molecular mechanisms and structures. It allows one to experimentally observe the dynamics of gene expression, protein expression, and molecular interactions in a living cell. [3] It essentially serves as a precise, quantitative tool regarding biochemical ...

  7. Fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_microscope

    The quest for fluorescent probes with a high specificity that also allow live imaging of plant cells is ongoing. [7] There are many fluorescent molecules called fluorophores or fluorochromes such as fluorescein, Alexa Fluors, or DyLight 488, which can be chemically linked to a different molecule which binds the target of interest within the sample.

  8. Fluorescence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_spectroscopy

    A laser only emits light of high irradiance at a very narrow wavelength interval, typically under 0.01 nm, which makes an excitation monochromator or filter unnecessary. The disadvantage of this method is that the wavelength of a laser cannot be changed by much. A mercury vapor lamp is a line lamp, meaning it emits light near peak wavelengths.

  9. Fluorescence-lifetime imaging microscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence-lifetime...

    Fluorescence-lifetime imaging yields images with the intensity of each pixel determined by , which allows one to view contrast between materials with different fluorescence decay rates (even if those materials fluoresce at exactly the same wavelength), and also produces images which show changes in other decay pathways, such as in FRET imaging.