Search results
Results from the WOW.Com Content Network
Genetics compression algorithms are the latest generation of lossless algorithms that compress data (typically sequences of nucleotides) using both conventional compression algorithms and genetic algorithms adapted to the specific datatype. In 2012, a team of scientists from Johns Hopkins University published a genetic compression algorithm ...
By operation of the pigeonhole principle, no lossless compression algorithm can shrink the size of all possible data: Some data will get longer by at least one symbol or bit. Compression algorithms are usually effective for human- and machine-readable documents and cannot shrink the size of random data that contain no redundancy. Different ...
The LZ4 algorithm aims to provide a good trade-off between speed and compression ratio. Typically, it has a smaller (i.e., worse) compression ratio than the similar LZO algorithm, which in turn is worse than algorithms like DEFLATE. However, LZ4 compression speed is similar to LZO and several times faster than DEFLATE, while decompression speed ...
Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data.
Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch.It was published by Welch in 1984 as an improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978.
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
The Weissman score is a performance metric for lossless compression applications. It was developed by Tsachy Weissman, a professor at Stanford University, and Vinith Misra, a graduate student, at the request of producers for HBO's television series Silicon Valley, a television show about a fictional tech start-up working on a data compression algorithm.
This algorithm uses a dictionary compression scheme somewhat similar to the LZ77 algorithm published by Abraham Lempel and Jacob Ziv in 1977 and features a high compression ratio (generally higher than bzip2) [2] [3] and a variable compression-dictionary size (up to 4 GB), [4] while still maintaining decompression speed similar to other ...