Search results
Results from the WOW.Com Content Network
Technetium scintigraphy of a neck of Graves' disease patient. Technetium-99m ("m" indicates that this is a metastable nuclear isomer) is used in radioactive isotope medical tests. For example, technetium-99m is a radioactive tracer that medical imaging equipment tracks in the human body.
Technetium-99m (99m Tc) is a metastable nuclear isomer of technetium-99 (itself an isotope of technetium), symbolized as 99m Tc, that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope in the world.
Technetium-99 (99 Tc) is an isotope of technetium that decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays.It is the most significant long-lived fission product of uranium fission, producing the largest fraction of the total long-lived radiation emissions of nuclear waste.
Technetium (43 Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. [2] It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission (there are an estimated 2.5 × 10 −13 grams of 99 Tc per gram of pitchblende) [3] or neutron capture by molybdenum.
Today, Technetium-99m is the most utilized element in nuclear medicine and is employed in a wide variety of nuclear medicine imaging studies. Widespread clinical use of nuclear medicine began in the early 1950s, as knowledge expanded about radionuclides, detection of radioactivity, and using certain radionuclides to trace biochemical processes.
Technetium is particularly mobile in the environment as it forms negatively charged pertechnetate-ions and it presents the biggest radiological hazard among the long lived fission products. Despite being a metal, Technetium usually doesn't form positively charged ions, but Technetium halides like Technetium hexafluoride exist.
Here's a look at why the dye was banned, the foods it’s found in and expert advice for families concerned about its health impacts. Meet the Experts: Stefani Sassos, M.S., ...
The first, technetium, was created in 1937. [3] Plutonium (Pu, atomic number 94), first synthesized in 1940, is another such element. It is the element with the largest number of protons (atomic number) to occur in nature, but it does so in such tiny quantities that it is far more practical to synthesize it.