enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    [7] [8] In 1933, Lorente de Nó discovered "recurrent, reciprocal connections" by Golgi's method, and proposed that excitatory loops explain certain aspects of the vestibulo-ocular reflex. [ 9 ] [ 10 ] During 1940s, multiple people proposed the existence of feedback in the brain, which was a contrast to the previous understanding of the neural ...

  3. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    2.5 Faster hardware. 2.6 Residual connection. 2.7 Other activation functions. ... (LSTM) network was designed to solve the problem (Hochreiter & Schmidhuber, 1997). [9]

  4. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  5. Gating mechanism - Wikipedia

    en.wikipedia.org/wiki/Gating_mechanism

    An LSTM unit contains three gates: An input gate, which controls the flow of new information into the memory cell; A forget gate, which controls how much information is retained from the previous time step; An output gate, which controls how much information is passed to the next layer. The equations for LSTM are: [2]

  6. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    For higher-order autoregressive processes, the sample autocorrelation needs to be supplemented with a partial autocorrelation plot. The partial autocorrelation of an AR( p ) process becomes zero at lag p + 1 and greater, so we examine the sample partial autocorrelation function to see if there is evidence of a departure from zero.

  7. Teacher forcing - Wikipedia

    en.wikipedia.org/wiki/Teacher_forcing

    Teacher forcing is an algorithm for training the weights of recurrent neural networks (RNNs). [1] It involves feeding observed sequence values (i.e. ground-truth samples) back into the RNN after each step, thus forcing the RNN to stay close to the ground-truth sequence.

  8. Exclusive-Amazon set to release long-delayed Alexa ... - AOL

    www.aol.com/news/exclusive-amazon-set-release...

    February 5, 2025 at 2:52 PM. By Greg Bensinger (Reuters) -Amazon is set to release its long-awaited - and delayed - Alexa generative artificial intelligence voice service, said three people ...

  9. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]