enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...

  3. Kriging - Wikipedia

    en.wikipedia.org/wiki/Kriging

    In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]

  4. Comparison of Gaussian process software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_Gaussian...

    This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations.. This article is written from the point of view of Bayesian statistics, which may use a terminology different from the one commonly used in kriging.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Gaussian process is a powerful non-linear interpolation tool. Many popular interpolation tools are actually equivalent to particular Gaussian processes. Gaussian processes can be used not only for fitting an interpolant that passes exactly through the given data points but also for regression; that is, for fitting a curve through noisy data.

  6. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Gaussian because it has a normal distribution in the time domain with an average time domain value of zero (Gaussian process). Wideband noise comes from many natural noise sources, such as the thermal vibrations of atoms in conductors (referred to as thermal noise or Johnson–Nyquist noise ), shot noise , black-body radiation from the earth ...

  7. White noise - Wikipedia

    en.wikipedia.org/wiki/White_noise

    This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis , a Gaussian white noise w {\displaystyle w} is defined as a stochastic tempered distribution, i.e. a random variable with values in the space S ′ ( R ) {\displaystyle {\mathcal {S}}'(\mathbb {R} )} of tempered distributions .

  8. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.

  9. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    For an AR(1) process with a positive , only the previous term in the process and the noise term contribute to the output. If φ {\displaystyle \varphi } is close to 0, then the process still looks like white noise, but as φ {\displaystyle \varphi } approaches 1, the output gets a larger contribution from the previous term relative to the noise.