Search results
Results from the WOW.Com Content Network
Ground pressure is the pressure exerted on the ground by the tires or tracks of a motorized vehicle, and is one measure of its potential mobility, [1] especially over soft ground. It also applies to the feet of a walking person or machine. Pressure is measured in the SI unit of pascals (Pa).
For example, a force of 1 g on an object sitting on the Earth's surface is caused by the mechanical force exerted in the upward direction by the ground, keeping the object from going into free fall. The upward contact force from the ground ensures that an object at rest on the Earth's surface is accelerating relative to the free-fall condition.
The CGS unit of pressure is the barye (Ba), equal to 1 dyn·cm −2, or 0.1 Pa. Pressure is sometimes expressed in grams-force or kilograms-force per square centimetre ("g/cm 2" or "kg/cm 2") and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units ...
A gnathodynamometer (or occlusometer) is an instrument for measuring the force exerted in closing the mouth. This device can measure the bite force of humans in the following three measurements: newtons, (N), pounds, (lb), or kilograms, (kg). The average bite force of a human being is 140 pounds of force.
The lift force is transmitted through the pressure, which acts perpendicular to the surface of the airfoil. Thus, the net force manifests itself as pressure differences. The direction of the net force implies that the average pressure on the upper surface of the airfoil is lower than the average pressure on the underside. [60]
In physics, and in particular in biomechanics, the ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. [1] For example, a person standing motionless on the ground exerts a contact force on it (equal to the person's weight) and at the same time an equal and opposite ground reaction force is exerted by the ground on the person.
If a and b are distances from the fulcrum to points A and B and if force F A applied to A is the input force and F B exerted at B is the output, the ratio of the velocities of points A and B is given by a / b so the ratio of the output force to the input force, or mechanical advantage, is given by
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.