Search results
Results from the WOW.Com Content Network
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A [ 10 ][ 20 ] or int A [ m ][ n ] , instead of the traditional int ** A .
The std::string class is the standard representation for a text string since C++98. The class provides some typical string operations like comparison, concatenation, find and replace, and a function for obtaining substrings. An std::string can be constructed from a C-style string, and a C-style string can also be obtained from one. [7]
Multiple dispatch, meta, scalar and array-oriented, parallel, concurrent, distributed ("cloud") No K: Data processing, business No No No No No No Array-oriented, tacit Unknown Kotlin: Application, mobile development, server-side, client-side, web Yes Yes Yes Yes Yes Yes [31] De facto standard via Kotlin Language Specification Ksh: Shell ...
An application strings manager is a software tool primarily designed to optimize the download and storage of strings files used and produced in software development. [1] It centralizes the management of all the product strings generated and used by an organization to overcome the complexity arising from the diversity of strings types, and their position in the overall content workflow.
Nano-COM can be expressed in a portable C++ header file. Nano-COM extends the native ABI of the underlying instruction architecture and OS to support typed object references – whereas a typical ABI focuses on atomic types, structures, arrays and function calling conventions. A Nano-COM header file defines or names at least three types: