enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    Let x 1 and x 2 be the vector positions of the two bodies, and m 1 and m 2 be their masses. The goal is to determine the trajectories x 1 (t) and x 2 (t) for all times t, given the initial positions x 1 (t = 0) and x 2 (t = 0) and the initial velocities v 1 (t = 0) and v 2 (t = 0). When applied to the two masses, Newton's second law states that

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    A special case of this is the circular orbit, which is an ellipse of zero eccentricity. The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows: Centrifugal acceleration matches the acceleration due to gravity.

  4. Lunar Traverse Gravimeter - Wikipedia

    en.wikipedia.org/wiki/Lunar_Traverse_Gravimeter

    The Lunar Traverse Gravimeter was a lunar science experiment, deployed by astronauts on the lunar surface in 1972 as part of Apollo 17.The goal of the experiment was to use relative gravity measurements to infer potential attributes about the geological substrata near the Apollo 17 landing site.

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity , Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.

  6. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    The concept of center of gravity or weight was studied extensively by the ancient Greek mathematician, physicist, and engineer Archimedes of Syracuse.He worked with simplified assumptions about gravity that amount to a uniform field, thus arriving at the mathematical properties of what we now call the center of mass.

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  8. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A gravity assist maneuver, sometimes known as a "slingshot maneuver" or Crocco mission after its 1956 proposer Gaetano Crocco, results in an opposition-class mission with a much shorter dwell time at the destination. [29] [27] This is accomplished by swinging past another planet, using its gravity to alter the orbit. A round trip to Mars, for ...

  9. Gravitation of the Moon - Wikipedia

    en.wikipedia.org/wiki/Gravitation_of_the_Moon

    The acceleration due to gravity on the surface of the Moon is approximately 1.625 m/s 2, about 16.6% that on Earth's surface or 0.166 ɡ. [1] Over the entire surface, the variation in gravitational acceleration is about 0.0253 m/s 2 (1.6% of the acceleration due to gravity).