Search results
Results from the WOW.Com Content Network
The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):
The cross-sectional area (′) of an object when viewed from a particular angle is the total area of the orthographic projection of the object from that angle. For example, a cylinder of height h and radius r has A ′ = π r 2 {\displaystyle A'=\pi r^{2}} when viewed along its central axis, and A ′ = 2 r h {\displaystyle A'=2rh} when viewed ...
The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +
Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of dπ at the centre of the circle), each with an area of β 1 / 2 β · r 2 · dπ (derived from the expression for the area of a triangle: β 1 / 2 β · a · b · sinπ ...
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
The barn is commonly used in describing the cross-sectional area of interaction in nuclear physics. [13] ... As with the formula for the area of a circle, ...
The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]
A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2. It is a unit intended for referring to the area of a wire with a circular cross section.