enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem. Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution).

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...

  5. Change of variables (PDE) - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables_(PDE)

    Often, theory can establish the existence of a change of variables, although the formula itself cannot be explicitly stated. For an integrable Hamiltonian system of dimension , with ˙ = / and ˙ = /, there exist integrals .

  6. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In Integration by substitution, the limits of integration will change due to the new function being integrated. With the function that is being derived, a {\displaystyle a} and b {\displaystyle b} are solved for f ( u ) {\displaystyle f(u)} .

  7. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    because of the substitution rule for integrals. If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in ...

  8. Integration using parametric derivatives - Wikipedia

    en.wikipedia.org/wiki/Integration_using...

    In calculus, integration by parametric derivatives, also called parametric integration, [1] is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution.

  9. Feynman parametrization - Wikipedia

    en.wikipedia.org/wiki/Feynman_parametrization

    Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.