enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infix notation - Wikipedia

    en.wikipedia.org/wiki/Infix_notation

    Infix notation is more difficult to parse by computers than prefix notation (e.g. + 2 2) or postfix notation (e.g. 2 2 +). However many programming languages use it due to its familiarity. It is more used in arithmetic, e.g. 5 × 6. [1]

  3. Common operator notation - Wikipedia

    en.wikipedia.org/wiki/Common_operator_notation

    In Prolog for example, the infix operator :-is non-associative, so constructs such as a :- b :- c are syntax errors. Unary prefix operators such as − (negation) or sin (trigonometric function) are typically associative prefix operators. When more than one associative prefix or postfix operator of equal precedence precedes or succeeds an ...

  4. Shunting yard algorithm - Wikipedia

    en.wikipedia.org/wiki/Shunting_yard_algorithm

    The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions. For example, "1 2 +" is not a valid infix expression, but would be parsed as "1 + 2". The algorithm can ...

  5. Maude system - Wikipedia

    en.wikipedia.org/wiki/Maude_system

    Operators taking 0 arguments are considered constants, and one constructs their term-language by these simple constructs. Maude lets the user specify whether or not operators are infix, postfix or prefix (default), this is done using underscores as place fillers for the input terms. Reduction equations are assumed to be confluent and ...

  6. Stack-oriented programming - Wikipedia

    en.wikipedia.org/wiki/Stack-oriented_programming

    For example, postfix notation would be written 2, 3, multiply instead of multiply, 2, 3 (prefix or Polish notation), or 2 multiply 3 (infix notation). The programming languages Forth, Factor, RPL, PostScript, BibTeX style design language [2] and many assembly languages fit this paradigm.

  7. Operator (computer programming) - Wikipedia

    en.wikipedia.org/.../Operator_(computer_programming)

    Most programming languages support binary operators and a few unary operators, with a few supporting more operands, such as the ?: operator in C, which is ternary. There are prefix unary operators, such as unary minus -x, and postfix unary operators, such as post-increment x++; and binary operations are infix, such as x + y or x = y.

  8. SKI combinator calculus - Wikipedia

    en.wikipedia.org/wiki/SKI_combinator_calculus

    Because this defines T, F, NOT (as a postfix operator), OR (as an infix operator), and AND (as a postfix operator) in terms of SKI notation, this proves that the SKI system can fully express Boolean logic. As the SKI calculus is complete, it is also possible to express NOT, OR and AND as prefix operators:

  9. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.