enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The simplest probabilistic primality test is the Fermat primality test (actually a compositeness test). It works as follows: Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime.

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  4. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  5. Solovay–Strassen primality test - Wikipedia

    en.wikipedia.org/wiki/Solovay–Strassen...

    The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic primality test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 [ 1 ] (see Theorem E in the paper).

  6. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  7. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    An odd composite number n = d · 2 s + 1 where d is odd is called a strong (Fermat) pseudoprime to base a if: ()or <.(If a number n satisfies one of the above conditions and we don't yet know whether it is prime, it is more precise to refer to it as a strong probable prime to base a.

  8. Pépin's test - Wikipedia

    en.wikipedia.org/wiki/Pépin's_test

    For integer b > 1, base b may be used if and only if only a finite number of Fermat numbers F n satisfies that () =, where () is the Jacobi symbol. In fact, Pépin's test is the same as the Euler-Jacobi test for Fermat numbers, since the Jacobi symbol ( b F n ) {\displaystyle \left({\frac {b}{F_{n}}}\right)} is −1, i.e. there are no Fermat ...

  9. Lucas–Lehmer–Riesel test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer–Riesel_test

    The test was developed by Hans Riesel and it is based on the Lucas–Lehmer primality test. It is the fastest deterministic algorithm known for numbers of that form. [citation needed] For numbers of the form N = k ⋅ 2 n + 1 (Proth numbers), either application of Proth's theorem (a Las Vegas algorithm) or one of the deterministic proofs ...