Search results
Results from the WOW.Com Content Network
then has expectation equal to the average measured value and standard deviation equal to the standard deviation of the average. When the uncertainty is evaluated from a small number of measured values (regarded as instances of a quantity characterized by a Gaussian distribution), the corresponding distribution can be taken as a t-distribution. [11]
A practical application is an experiment in which one measures current, I, and voltage, V, on a resistor in order to determine the resistance, R, using Ohm's law, R = V / I. Given the measured variables with uncertainties, I ± σ I and V ± σ V, and neglecting their possible correlation, the uncertainty in the computed quantity, σ R, is:
Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of interest.
These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
The probability that an uncertain number represented by a p-box D is less than zero is the interval Pr(D < 0) = [F(0), F̅(0)], where F̅(0) is the left bound of the probability box D and F(0) is its right bound, both evaluated at zero. Two uncertain numbers represented by probability boxes may then be compared for numerical magnitude with the ...