Search results
Results from the WOW.Com Content Network
Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source.
The spectrum does not contain all the colors that the human visual system can distinguish. Unsaturated colors such as pink, or purple variations like magenta, for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called pure colors or spectral colors. [8] [9]
The kelvin now only depends on the Boltzmann constant and universal constants (see 2019 SI unit dependencies diagram), allowing the kelvin to be expressed exactly as: [2] 1 kelvin = 1.380 649 × 10 −23 / (6.626 070 15 × 10 −34)(9 192 631 770) h Δν Cs / k B = 13.806 49 / 6.091 102 297 113 866 55 h Δν Cs / k B
This is by design; the XYZ color matching functions are normalized such that their integrals over the visible spectrum are the same. [1] Illuminant E is not a black body, so it does not have a color temperature, but it can be approximated by a D series illuminant with a CCT of 5455 K. (Of the canonical illuminants, D 55 is the closest.)
Correlated color temperature (CCT, T cp) refers to the temperature of a Planckian radiator whose perceived color most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions."
A rainbow is a decomposition of white light into all of the spectral colors. Laser beams are monochromatic light, thereby exhibiting spectral colors. A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band (e.g. lasers).
Researchers use daylight as the benchmark to which to compare color rendering of electric lights. In 1948, daylight was described as the ideal source of illumination for good color rendering because "it (daylight) displays (1) a great variety of colors, (2) makes it easy to distinguish slight shades of color, and (3) the colors of objects around us obviously look natural".
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).