Search results
Results from the WOW.Com Content Network
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
A primary concern of algorithmic topology, as its name suggests, is to develop efficient algorithms for solving problems that arise naturally in fields such as computational geometry, graphics, robotics, social science, structural biology, and chemistry, using methods from computable topology. [1] [2] [3]
Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
Currently, one of the most famous open problems in theoretical computer science is the P = NP problem, which involves the relationship between the complexity classes P and NP. The Clay Mathematics Institute has offered a $1 million USD prize for the first correct proof, along with prizes for six other mathematical problems. [18]
The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...
Category theory is the language of modern algebra, and has been widely used in the study of algebraic geometry and topology. It has been noted that "the key observation of [10] is that the persistence diagram produced by [8] depends only on the algebraic structure carried by this diagram."
For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot. A complete algorithmic solution to this problem exists, which has unknown complexity. [1]