enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [ 1 ]

  3. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    By the Pythagorean theorem, the magnitude of the resultant force is [(-10) 2 + (-8) 2] 1/2 ≈ 12.8 N, which is also the magnitude of the equilibrant force. The angle of the equilibrant force can be found by trigonometry to be approximately 51 degrees north of east. Because the angle of the equilibrant force is opposite of the resultant force ...

  4. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    Graphical placing of the resultant force. Resultant force and torque replaces the effects of a system of forces acting on the movement of a rigid body. An interesting special case is a torque-free resultant, which can be found as follows: Vector addition is used to find the net force; Use the equation to determine the point of application with ...

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The magnitude of the resultant varies from the difference of the magnitudes of the two forces to their sum, depending on the angle between their lines of action. [4]: ch.12 [5] Free body diagrams of a block on a flat surface and an inclined plane. Forces are resolved and added together to determine their magnitudes and the net force.

  6. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  7. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    [9] [10] The magnitude of torque applied to a rigid body depends on three quantities: the force applied, the lever arm vector [11] connecting the point about which the torque is being measured to the point of force application, and the angle between the force and lever arm vectors. In symbols:

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

  9. Varignon's theorem (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem_(mechanics)

    Varignon's theorem is a theorem of French mathematician Pierre Varignon (1654–1722), published in 1687 in his book Projet d'une nouvelle mécanique.The theorem states that the torque of a resultant of two concurrent forces about any point is equal to the algebraic sum of the torques of its components about the same point.