Search results
Results from the WOW.Com Content Network
In biology the term 'condensation' is used much more broadly and can also refer to liquid–liquid phase separation to form colloidal emulsions or liquid crystals within cells, and liquid–solid phase separation to form gels, [1] sols, or suspensions within cells as well as liquid-to-solid phase transitions such as DNA condensation during ...
Liquid-liquid phase separation (LLPS) is well defined in the Biomolecular condensate page.. LLPS databases cover different aspects of LLPS phenomena, ranging from cellular location of the Membraneless Organelles (MLOs) to the role of a particular protein/region forming the condensate state.
It compares pi-pi interactions predicted in the target proteins with all proteins found in the PDB to assign a score of phase-separation propensity. [3] catGRANULE [4] 2016 catGRANULE is a method that was originally trained against yeast protein but it has been shown to be useful to predict human phase-separating proteins. [5]
The most common type of phase separation is between two immiscible liquids, such as oil and water. This type of phase separation is known as liquid-liquid equilibrium. Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining ...
Coacervate droplets dispersed in a dilute phase. Coacervate (/ k oʊ ə ˈ s ɜːr v ə t / or / k oʊ ˈ æ s ər v eɪ t /) is an aqueous phase rich in macromolecules such as synthetic polymers, proteins or nucleic acids. It forms through liquid-liquid phase separation (LLPS), leading to a dense phase in thermodynamic equilibrium with a ...
This mixture is then centrifuged. Because the phenol:chloroform mixture is immiscible with water, the centrifuge will cause two distinct phases to form: an upper aqueous phase, and a lower organic phase. The aqueous phase rises to the top because it is less dense than the organic phase containing the phenol:chloroform.
A separatory funnel used for liquid–liquid extraction, as evident by the two immiscible liquids.. Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar).
This response is known as the phase behavior of the bilayer. Broadly, at a given temperature a lipid bilayer can exist in either a liquid or a solid phase. The solid phase is commonly referred to as a “gel” phase. All lipids have a characteristic temperature at which they undergo a transition from the gel to liquid